(7 pages)	Reg. No. :		3.		every subspace of X is normal then the space is ————	
Code No.: 5386 Sub. Code: ZMAM 44		4		(a)		
M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2024				(b)		
Fourth Semester				(c)	Locally compact	
Mathematics — Core				(d)	Regular	
TOPOLOGY — II			4.	Λc	losed subspace of a normal space is ————	
(For those who	joined in July 2021 – 2022)	(*)		(a)	Regular (b) Compact	
Time : Three hours	Maximum : 75 mark	s		(c)	Normal (d) Dense	
PART A — $(10 \times 1 = 10 \text{ marks})$			5.	A	compact Hausdorff space X is metrizable if and	
Answer ALL questions.			if X has			
Choose the corre	ct answer:			(a)	(b) Oncountable basis	
1. A space that has points is said to b	s a countable basis at each of its be	3		(c)	Covers (d) Closed sets	
(a) Second cour	ntable (b) First countable		6.	a coon points x of 21 mas		
(c) Hausdorff	(d) Dense				eighborhood that is metrizable in the subspace ology.	
2. A subset A of a	a space X is said to be dense i	f		(a)	Countable basis (b) Locally metrizable	
(a) $A = X$	(b) $A = \overline{A}$			(c)	Homeomorphic (d) Complete	
(c) $A = \phi$	(d) $\overline{A} = X$					
			-			
7. The collection $A = \left\{ (0, \frac{1}{n}) \middle n \in \mathbb{Z}_+ \right\}$ is					PART B — $(5 \times 5 = 25 \text{ marks})$ s	
in (0, 1) but not in	n R	*	0	Answ	er ALL questions, choosing either (a) or (b).	
(a) Locally finit		j n	11.	(a)	Show that if X is normal, every pair of disjoint closed sets have neighborhoods whose closures are disjoint.	
(c) Refinement	(d) Countably finite				Or	
 A collection A of subsets of X has the countable intersection property if every countable intersection of elements of A is 				(b)	Let X be a topological space in which one point sets are closed prove that X is regular if and only if given a point x of X and a neighborhood U of x , there is a	
(a) Empty	(b) Constant 0				neighborhood V of x such that $\overline{V} \subseteq U$.	
(c) Nonempty	(d) Infinite		12.	(a)	Prove that every compact Hausdorff space is normal.	
9. A Space X is a — if and only if every					· Or	
non empty open set in X is of the second category.				(b)	Prove that a subspace of a completely	
(a) Baire space	(b) Empty interior				regular space is completely regular a product of completely regular space	
(c) Hausdorff sp		. 7			completely regular space is complete regular.	
 If A contains no empty set then A 	open set of X other than the has $-$		13.	(a)	State and prove imbedding theorem.	

(a)

(c)

Interior

Empty interior

Empty

Second category

Code No. : 5386

(b)

Page 3

Code No.: 5386 Page 4 [P.T.O.]

or

Give an example that a Hausdorff space with a countable basis need not be metrizable.

- 14. (a) Let X be a set Ω be a collection of subsets of X that is maximal with respect to the finite intersection property. Then prove that
 - (i) Any finite intersection of elements of Ω is an element of Ω.
 - (ii) If A is a subset of X that intersects every element of D then A is an element of D.

Or

- (b) Let A be a locally finite collection of subsets of X then prove
 - (i) The collection B = {A}_{A∈A} of the closures of the elements of A is locally finite.
 - (ii) $\overline{\bigcup_{A \in A}} = \overline{\bigcup_{A \in A}} \overline{A}$.
- 15. '(a) Prove that any open subspace Y of a Baire space X is itself a Baire space.

Or

(b) Show that every locally compact Hausdorff space is a baire space.

Page 5 Code No.: 5386

(a) Let X be a metrizable space. If A is an open covering of X, then prove that there is an open covering ∈ of X refining A that is countably locally finite.

Or

- (b) Prove that an arbitrary product of compact spaces is compact in the product topology.
- 20. (a) Let X be a space let (y,d) be a metric space. Let $f_n: X \to Y$ be a sequence of continuous functions such that $f_n(x) \to f(x)$ for all $x \in X$. Where $f: X \to Y$. Prove that if X is a Baire space then the set of points at which f is continuous is dense in X.

Or

(b) State and prove Baire category theorem.

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

16. (a) Prove that a subspace and product of Hausdorff space is Hausdorff. Also prove that a subspace and product of a regular space is regular.

Or

- (b) Give an example for a space that is Hausdorff but not regular. Also prove that the space R_s is normal.
- 17. (a) State and prove Urysohn lemma.

Or

- (b) Prove that every regular space with a countable basis is normal.
- 18. (a) State and prove Tietze extension theorem.

Or

(b) Prove that every regular space X with a countable basis is metrizable.

Page 6 Code No.: 5386