(8 pages)		Reg. No. :			3	
Cod	e No. : 5	385	Sul	x Code : Zl	MAM 43	
M.Sc	. (CBCS) D	EGREE EX	AMIN.	ATION, APR	IL 2024.	
Fourth Semester						
Mathematics — Core						
	FI	UNCTIONA	LANA	LYSIS		
	(For those	who joined i	n July	2021-2022 o	nly)	
Time	: Three hou	ırs		Maximum:	75 marks	
	PAI	RT A — (10	× 1 = 1	0 marks)		- 5
Answer ALL questions.						
	Choose the correct answer:					
i.	A complet	e normed — space.	linear	space is	called as	
	(a) Metric			Hilbert		8
2.		r transform	ation	Banach T with a reafor every x t		6
	ymogani rijani na				2	
	(a) bound (c) operat		100 50	metric kernal		
	(c) profes		NTY.			
	3					2
		XV T. T. T. T.				
7 _c		gate operat	tor T	of T is d	efined by	
	$(T^*f)x = -$	E .		A	425	i le s
	(a) $T^*f(x)$)	(b)	$fT^*(x)$		
	(c) f(Tx)		(d)	$T^*(f(x))$		
8.	The value of $ T^*T =$					
	(a) T ²		(b)	T^*	ė.	
	(c) T	×	(q)	ø	51	
9.		or N on H es with its a			if	100 E
	(a) norma	•		singular	lle	PV.
	(c) bijecti			orthogonal	.a.	
10.		or A on		isfying the	condition	

(b) self adjoint

Code No.: 5385

(d) unitary

Page 3

(a) adjoint

(c) inverse

The isometric isomorphism $x \to F_x$ is called the - of N into N. (b) injective (c) natural imbedding (d) transitive The — of the linear transformation T is the subset $B \times B'$ consists of all ordered pairs of the form (x, T(x)). (b) graph of T (a) open (c) open map (d) closed map The set of all vectors orthogonal to a non empty ----- of S. (a) orthogonal complement (b) perpendicular (c) parallel (d) equal A complete Banach space whose norm arises from an inner product is said to be ------ space. (b) Complete (a) Banach (d) Lindelof (c) Hilbert

PART B — $(5 \times 5 = 25 \text{ marks})$

Page 2

Code No.: 5385

Answer ALL questions, choosing either (a) or (b).

11. (a) Let M be a linear subspace of a normed linear space N and f be a functional defined on M. If x_0 is a vector not in M and if $M_0 = M + [x_0]$ is the linear subspace spanned by M and x_0 then prove that f can be extended to a functional f_0 defined on M_0 such that $\|f_0\| = \|f\|$.

Or

- (b) Let N and N' be normed linear spaces and T be a linear transformation of N into N' then prove that the following conditions are all equivalent:
 - (i) T is continuous
 - (ii) T is continuous at the origin ie $x_n \to 0 \Rightarrow T(x_n) \to 0$
 - (iii) there exists a real number $k \ge 0$ with the property that $||Tx|| \le K ||x||$ for every $x \in N$.
 - (iv) if $S = \{x : ||x|| \le 1\}$ is the closed unit sphere in N then T(S) in a bounded set in N'.

Page 4 Code No.: 5385

[P.T.O.]

12. (a) State and prove closed graph theorem.

Or

- (b) Let B be a Banach space and M, N be closed linear subspaces of B such that B = M ⊕ N. If z = x + y is the unique representation of a vector in B as a sum of vectors in M and N then prove that the mapping p defined by P(z) = x is a projection on B whose range and null space are M and N.
- (a) If M is a closed linear subspace of a Hilbert space H, then prove that H = M ⊕ M[⊥].

Or

- (b) Prove Schwarz inequality.
- 14. (a) Let H be a Hilbert space and let f be an arbitrary functional in H. Then prove that there exists a unique vector y in H such that f(x) = (x, y) for every x in H.

Or

(b) If $\{e_i\}$ is an orthonormal set in a Hilbert space H, then prove that $\Sigma |(x, e_i)|^2 \le ||x||^2$ for every vector x in H.

Page 5 Code No. : 5385

17. (a) Prove that if N is a normed linear space, then the closed unit sphere S* in N* is a compact Hausdorff space in the weak*topology.

Or

- (b) State and prove open mapping theorem.
- 18. (a) If M is a proper closed linear subspace of a Hilbert space H, then prove that there exists a non zero vector z_0 in H such that $z_0 \perp M$.

Or

- (b) State and prove Uniform Boundedness theorem.
- 19. (a) If $\{e_i\}$ is an orthonormal set in a Hilbert space H and if x is an arbitrary vector in H then prove that $x \Sigma(x, e_i) e_i \perp e_j$ for each j.

Or

- (b) The adjoint operator $T \to T^*$ on \mathcal{B} (H) has the following properties Prove.
 - (i) $(T_1 + T_2)^* = T_1^* + T_2^*$
 - (ii) $(\alpha T)^* = \overline{\alpha} T^*$
 - (iii) $(T_1T_2)^* = T_2^*T_1^*$
 - (iv) $||T^*T|| = ||T||^2$

15. (a) If T is an operator on II for which (Tx, x) = 0 for all x, then prove that T = 0.

Or

(b) Prove that a closed linear subspace M of H is invariant under an operator T if and only if M^{\perp} is invariant under T^{*} .

PART C $-(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

16. (a) Let M be a closed linear subspace of a normed linear space N. If the norm of a coset x + M in the quotient space N/M is defined by ||x + M|| = inf {||x + m|| : m ∈ M} then prove that N/M is a normed linear space. Also if N is a Banach space so is N/M.

Or

(b) If N and N' are normed linear spaces then prove that the set B (N, N') of all continuous linear transformations of N into N' is itself a normed linear space with respect to the pointwise linear operations and norm defined by ||T|| = sup ||T(x)|| : ||x|| ≤ 1 }.

Page 6 Code No.: 5385

20. (a) If N_1 and N_2 are normal operators on H with either commutes with the adjoint of the other then prove that $N_1 + N_2$ and $N_1 N_2$ are normal.

Or

(b) Prove that if P_1, P_2, \dots, P_n are the projections on closed linear subspaces M_1, M_2, \dots, M_n of H then $P = P_1 + P_2, \dots, + P_n$ is a projection \Leftrightarrow the P_i s are pairwise orthogonal and P is a projection on $M = M_1 + \dots + M_n$.