(7	pages)
----	--------

Reg.	No.	
	* * * * * *	• *************************************

Code No.: 5383

Sub. Code: ZMAM 41

M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2024.

Fourth Semester

Mathematics - Core

ADVANCED ALGEBRA - 11

(For those who joined in July 2021 - 2022)

Time: Three hours

Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- A complex number is said to be number if it is algebraic over the field of rational numbers.
 - (a) real
 - (b) imaginary
 - (c) algebraic
 - (d) extension

- 6. The automorphism σ of K is in ______ if and only if $\sigma(\alpha) = \alpha$ for every $\alpha \in F$.
 - (a) G(K, F)
- (b) G(K|K)
- (c) $\varphi(G)$
- (d) $G(\varphi)$
- 7. Any two fields having the same number of elements are isomorphic.
 - (a) finite
- (b) infinite
- (c) equal
- (d) fixed
- 8. For every prime number p and every positive integer m there is a unique field having elements.
 - (a) p
- (b) p'
- (c) a
- (d) p'''
- 9. The only irreducible polynomials over the field of real numbers are of degree ————— or
 - (a) 0, 1
- (b) 1, 2
- (c) 0, 2
- (d) 0, ∞
- 10. If $x \in Q$ then norm of x is defined by $N(x) = \frac{1}{1 + x}$
 - (a) xx
- (b) xx
- (c) x
- (d) x^2

Page 3 Code No.: 5383

- The element $a \in K$ is said to be algebraic of over F if it satisfies a non zero polynomial over F of degree n but no non zero polynomial of lower degree.
 - (a) dimension r
- (b) degree n
- (c) basis n
- (d) extension
- A polynomial of degree n over a field can have roots in any extension field.
 - (a) atleast n
- (b) atmost n
- (c) exactly n
- (d) less than
- 4. If E is a minimal extension of the field F in which f(x) has n roots where $n = \deg f(x)$ then E is called —————.
 - (a) ring
- (b) basis
- (c) splitting field
- (d) normal
- 5. If G is a group of automorphisms of K, then the fixed field of G is the set of all elements $a \in K$ such that $\sigma(a) = ------$ for all $a \in G$.
 - (a) 1
- (b) 0
- (c) a
- (d) e

Page 2 Code No.: 5383

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

11. (a) If L is an algebraic extension of K and if K is an algebraic extension of F then prove that L is an algebraic extension of F.

Or

- (b) If $a \in K$ is of algebraic of degree n over F, then prove that [F(a):F] = n.
- 12. (a) State and prove remainder theorem.

Oı

- (b) If $f(x) \in F[x]$ is irreducible then prove that
 - (i) If the characteristic of F is 0, f(x) has no multiple roots
 - (ii) If the characteristic of F is $p \neq 0$, f(x) has a multiple root only if it is of the form $f(x) = g(x^p)$.
- 13. (a) Let K be the splitting field of f(x) in F[x]. Let p(x) be an irreducible factor of f(x) in F[x]. If the roots of p(x) are $\alpha_1, \alpha_2, \ldots, \alpha_r$, then prove that for each i there exist an automorphism σ_i in G(K, F) such that $\sigma_i(\alpha_1) = \alpha_i$.

Or

(b) Prove that a fixed field of G is a subfield of K.

Page 4 Code No.: 5383

(a) Prove that if the finite field F has p^m elements then the polynomial $x^{F^n}-x$ in F[x]factors in F[x] as $x^{p^m} - x = \prod_{i \in F} (x - \lambda)$.

- (b) Prove that if R is a ring in which px = 0 for all $x \in R$. Where p is a prime number, then $xT_{\alpha}^{pm}=x\alpha^{pm}-\alpha^{p^m}x.$
- (a) State and prove Lagrange identity.

- (b) Prove that the adjoint in Q satisfies
 - (i) $x^{**} = x$
 - (ii) $(\delta x + \gamma y)^* = \delta x^* + \gamma y^*$
 - (iii) $(xy)^* = y * x *$

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

(a) Prove that if L is a finite extension of K and if K is a finite extension of F then L is a finite of F. More extension [L:F] = [L:K][K:F].

(b) Show that the element $a \in K$ is algebraic over F if and only if F(a) is a finite extension of F.

> Code No.: 5383. Page 5

(a) State and prove Frobenius theorem.

Or

(b) Prove that every positive integer can be expressed as the sum of squares of four integers.

(a) Prove that if F is of characteristic 0 and if a, b are algebraic over F, then there exists an element $c \in F(a,b)$ such that F(a,b) = F(c).

- (b) If p(x) is a polynomial in F[x] of degree $n \ge 1$, and is irreducible over F then prove that there is an extension E of F such that [E:F]=n in which p(x) has a root.
- (a) Prove that if K is a finite extension of F, then G(K, F) is a finite group and its order o(G(K, F)) satisfies $o(G(K, F)) \le [K : F]$.

Or

- (b) Prove that K is a normal extension of F if and only if K is the splitting field of some polynomial over F.
- (a) Let G be a finite abelian group with the 19. property x'' = e is satisfied by atmost nelements of G for every integer n. Then prove that G is a cyclic group.

(b) State and prove Wedderburn theorem.

Code No.: 5383 Page 6