(7 pages)		Reg. No. :		3.	The extension K of F is called an algebraic extension of F if every element in K over F .			
Code No.: 5760		Sub. Code: WMAM 21			(a) simple	(b)	finite	
	anos pecper	EVAMINATION APRIL 2024.			(c) normal	(d)	algebraic	
M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2024. Second Semester Mathematics — Core ADVANCED ALGEBRA				4.	K is a normal extension of F if K is a finite extension of F such that F is the of $G(K, F)$.			
			2					
					(a) Field	(b)	Quotient	
	(For those who join	ed in July 2023 onwards)			(c) Fixed field	(d)	Subfield	
Time: Three hours Maximum: 75 marks				5.	Any finite extension of a field of characteristic is a simple extension.			
	PART A — ($15 \times 1 = 15 \text{ marks})$			(a) ∞	(b)		
	Answer A	ALL questions.			(c) 1	(d)	0	
	Choose the correct answer:			6.	The of	a group	G is a subfield of K.	
ı.	Let F be a field. If a field K contains F then K is				(a) Subfield		Fixed field	
	of F.				(c) Splitting field	5720	Quotient field	
	(a) subfield	(b) subgroup			(c) Splitting lield	(4)	2-	
2.	(c) superset If dim(K:F) = m t	(d) extension hen degree (K) =	1	7.	Let F be a filed of ω then $\omega^5 = \underline{\hspace{1cm}}$		numbers and $\omega = e^{\frac{2\pi}{5}}$	
	(a) m .	(b) n	: 40		(a) 0	(b)	-1	
	(c) m-1	(d) $n-1$			(c) 2	(d)		
	4		*	*II		Page 2	Code No. : 5760	
							е —	
8.	The automorphism σ of K is in $G(K, F)$ if $\sigma(\alpha) =$			12. The polynomial $\phi_n(x) = \pi(x - \theta)$ is called a polynomial.				
		, I			(a) cyclotomic	(b)	cubic	
	(a) $\alpha-1$	(b) $\frac{1}{\alpha}$			(c) monic	(d)	quadratic	
	(c) α	(d) $-\alpha$						
9.	The σ is an automorphism of K then the fixed field of G is the set of all $a \in K$ such that $\sigma(a) =$			13.	A group G $G = N_0 \supset N_1 \supset N_k$ subgroup of $N_i - 1$ a	$e = \{e\}$ wh	solvable if for nere N_i is a normal N_i is	
	for all	$\sigma \in G$.			(a) abelian	(b)	cyclic	
	(a) a	(b) a−1			(c) prime		non-abelian	
Ť	(c) $\frac{1}{a}$	(d) a^2			(c) prime	(4)	non abenan	
10.	Q	has p^m elements then every		14.	The roots of the po		$1 x^3 + 3x + 4$ over the	
10.	$\alpha \in F$ satisfies				(a) $-3 \pm \sqrt{-7}$	(b)	$-7\pm\sqrt{-3}$	
٠,		(b) $a^m = p$			(c) $\frac{-3 \pm \sqrt{-7}}{2}$			
	(c) $a^{p^{n}} = a$	(d) $\alpha^p = m$	#		(c) $\frac{-0.1}{2}$	(d)	2	
11.	A complex number θ is said to be a primitive n^{th} root of unity if $\theta^n = \underline{}$.			15.	 Every polynomial of degree n over a fiel complex numbers has all its n roots in of complex numbers. 			
	(a) 2	(b) n			(a) group		field	
	(c) 1	(d) 0					subfield	
	. F	Page 3 Code No.: 5760			(c) fixed field	Page 4	Code No.: 5760 [P.T.O.]	

PART B — $(5 \times 4 = 20 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

16. (a) If a, b in k are algebraic over F then show that a+b, a-b are algebraic over F.

Or

- (b) If a∈ K is algebraic of degree n over F then show that [F(a): F] = n
- 17. (a) Let f(x)∈ F[x] be a polynomial of degree ≥ 1. then show that there is an extension E of F of degree atmost n! in which f(x) has n roots.

Or

- (b) If F is a field of characteristic $p \neq 0$ then show that the polynomial $x^{p^m} x \in F[x]$ has distinct roots.
- (a) Let K be a field of complex numbers and let F be a field of real numbers. Find G(K, F).

Or

(b) Let K be a Normal extension of F. Then prove that (i) $[K:K_H] = O(H)$; (ii) $H = G(K, K_H)$.

Page 5 Code No.: 5760

 (a) Prove that a polynomial of degree n over a field can have atmost n roots in any extension field.

Or

- (b) Prove: A polynomial $f(x) \in F[x]$ has a multiple root if and only if f(x) and f'(x) have a nontrivial common factor.
- 23. (a) If K is a finite extension of F, then prove that G(K, F) is a finite group and $O(G(K, F)) \le [K:F]$.

Or

- (b) Prove that fundamental theorem of Galois theory.
- (a) Prove that any two finite fields having the same number of elements are isomorphic.

Or

- (b) State and prove the Wedderburn theorem.
- (a) State and prove Frobenius theorem.

Or

(b) State and prove Four Square Theorem.

19. (a) Let F be a field with q elements and suppose that $F \subset K$ where K is also a finite field. Then show that K has q^n elements.

Or

- (b) Show that the multiplicative group of non-zero elements of a finite field is cyclic.
- (a) Prove that the general polynomial of degree n≥5 is not solvable by radicals.

Or

(b) For all x, y in Q show that the adjoint in Q satisfies (i) $x^* = x$; (ii) $(xy)^* = y^*x^*$.

PART C - (5 × 8 = 40 marks)

Answer ALL questions, choosing either (a) or (b).

21. (a) If L is a finite extension of K and if K is a finite extension of F then prove that L is a finite extension of F.

Or

(b) If L is an algebraic extension of K and if K is an algebraic extension of F then prove that L is an algebraic extension of F.

Page 6 Code No.: 5760